Контрольные работы по алгебре и началам анализа в 10 классе Входной срез.

Вариант 1.

Решите систему уравнений $\begin{cases} x - y = 6, \\ xy = 16. \end{cases}$

Решите неравенство 5x - 1,5(2x + 3) < 4x + 1,5

Представьте выражение $\frac{a^{-3} \cdot a^{-5}}{a^{-10}}$ в виде степени с основанием a.

Постройте график функции $y = x^2 - 4$. Укажите, при каких значениях xфункция принимает положительные значения.

5. Упростите выражение $\frac{b^2 - ab}{a} \cdot \frac{a^2}{b^2 - a^2}$

Вариант 2.

ариант 2.

1. Решите систему уравнений $\begin{cases} x - y = 2, \\ xy = 15. \end{cases}$

2. Решите неравенство 2x-4.5 > 6x-0.5(4x-3)

3. Представьте выражение $\frac{y^{-6} \cdot y^{-8}}{v^{-16}}$ в виде степени с основанием y.

4. Постройте график функции $y = -x^2 + 1$. Укажите, при каких значениях x функция принимает отрицательные значения.

5. Упростите выражение $\frac{3b^2 + 3}{1 - b} + \frac{6b}{b - 1}$

Вводная контрольная работа по алгебре

Вариант 1

Часть 1

1. Найдите область определения функции $y = \sqrt{5 - x}$.

1)
$$x \ge 5$$
; 2) $x \ge -5$; 3) $x \ge 0$; 4) $x \le 5$.

2. Разложите квадратный трёхчлен $5x^2 - 6x + 1$ на множители

1)
$$5(x-1)(5x-1)$$
; 2) $(x-1)(5x-1)$; 3) $(x-1)(x-0,2)$; 4) $(5x-1)(x-0,2)$.

3. Найдите координаты вершины параболы, заданной формулой $y = 2x^2 - 8x + 6$

1) (2; -2); 2) (-2; 30); 3) (2; 18); 4. Решите неравенство $3x^2 - 4x - 7 < 0$

1)
$$\left[-1; 2\frac{1}{3}\right];$$
 2) $(-\infty; +\infty);$ 3) $\left(-1; 2\frac{1}{3}\right);$ 4) $\left(-2\frac{1}{3}; 1\right].$

5. Ордината вершины параболы $y = -(x + 6)^2 + 5$ равна

1) -5; 2) 5; 3) -6; 4) 6.

6. Решением системы $\begin{cases} y = x + 2 \\ v + x^2 = 4 \end{cases}$ является пара чисел

1) (-5; -3); 2) (1; 3) μ (-2; 0); 3) (1; -3); 4) (2; 0).

7. Найдите разность арифметической прогрессии 5; 8; 11...

1) -3; 2) 3; 3) 13; 4) 1,6.

8. Шестой член арифметической прогрессии 1; -2; -5... равен

	1) -14;	2) 12;	3) -15;	4) 16.		
9.	Знаменат	ель геом	етрическо	й прогрессии	4; 12; 36	равен
	1) 48; 2	2) 3; 3) -8; 4)	8.		
10	. Пятый чл	пен геоме	етрическо	й прогрессии	2; -6; 18 1	равен
	1) -54;	2) 162;	3) -162	; 4) 16.		
11	. Найдите	значение	е разности	$4\sqrt{81} - \sqrt[3]{216}$		
	1) 62.	2) 2.	2) 125.	1) 2		

Часть 2

1. Решите уравнение
$$x^4 - 13x^2 + 36 = 0$$

2. Решите неравенство
$$3x^2 + 2x - 1 \ge 0$$

3. Решите систему
$$\begin{cases} x - y = 2, \\ x^2 - xy + y^2 = 7 \end{cases}$$

4. Сумма трёх чисел, составляющих арифметическую прогрессию, равна 12, а произведение первого и второго – 8. Найдите эти числа.

Вариант 2

Часть 1

1. Найдите область определения функции $y = \sqrt{4 - x}$.

1)
$$x \ge 4$$
; 2) $x \ge -4$; 3) $x \ge 0$; 4) $x \le 4$.

2. Разложите квадратный трёхчлен $2x^2 + 5x - 3$ на множители 1) 2(x-3)(x-0.5); 2) 2(x-3)(x+0.5); 3) (x+3)(x-0.5); 4) (x+3)(2x-1).

3. Найдите координаты вершины параболы, заданной формулой $y = 3x^2 - 6x + 2$ 1) (2; 2); 2) (-1; 11); 3) (1; -1); 4) (4; 6).

4. Решите неравенство $4x^2 - 3x - 1 < 0$

1)
$$\left[-1;\frac{1}{4}\right]$$
; 2) $(-\infty;+\infty)$; 3) $\left(-\frac{1}{4};1\right)$; 4) $\left(-\frac{1}{4};1\right]$.

5. Ордината вершины параболы $y = -(x - 5)^2 + 6$ равна

6. Решением системы $\begin{cases} y = x - 3 \\ y - x^2 = -5 \end{cases}$ является пара чисел

7. Найдите разность арифметической прогрессии 6; 10; 14...

8. Шестой член арифметической прогрессии 2; -3; -8... равен

9. Знаменатель геометрической прогрессии 2; 6; 18... равен

10. Пятый член геометрической прогрессии -2; -6; -18... равен

11. Найдите значение разности $\sqrt[4]{625} - \sqrt[3]{64}$

Часть 2

1. Решите уравнение $x^4 - 65x^2 + 64 = 0$

2. Решите неравенство $3x^2 - 5x - 2 ≤ 0$

3. Решите систему
$$\begin{cases} x + y = 3, \\ x^2 - xy - y^2 = 1 \end{cases}$$

4. Сумма трёх чисел, составляющих арифметическую прогрессию, равна произведению первого и второго чисел и равна 15. Найдите эти числа.

Контрольная работа № 1

по теме «Действительные числа»

Вариант 1

- 1. Вычислить: 1) $\frac{\sqrt[3]{9\cdot 3^5}}{15^0\cdot 27^2\cdot 3^{-\frac{1}{3}}}$; 2) $\left(\sqrt[3]{2\sqrt{16}}\right)^2$.
- 2. Известно, что $12^x = 3$. Найти 12^{2x-1} .
- 3. Выполнить действия (a > 0, b > 0): 1) $a^{4+\sqrt{5}} \cdot \left(\frac{1}{a^{\sqrt{5}-1}}\right)^{\sqrt{5}+1}$; 2) $\frac{\sqrt[3]{a} + \sqrt[3]{ab}}{\sqrt[3]{a}} \sqrt[3]{b}$.
- 4. Сравнить числа: 1) $\left(\frac{2}{7}\right)^{\frac{3}{7}}$ $u\left(\frac{2}{7}\right)^{\frac{5}{7}}$; 2) $(4,2)^{\sqrt{7}}$ $u\left(4\frac{2}{5}\right)^{\sqrt{7}}$.
- 5. Записать бесконечную периодическую десятичную дробь 0,2(7) в виде обыкновенной.
- 6. Упростить $\left(\frac{a^{\frac{1}{2}}+2}{a+2a^{\frac{1}{2}}+1}-\frac{a^{\frac{1}{2}}-2}{a-1}\right)\cdot\frac{a^{\frac{1}{2}}+1}{a^{\frac{1}{2}}}$ $npu\ a>0,\ a\neq 1.$

Вариант 2

- Вычислить 1) $\frac{2^9 \cdot \sqrt[5]{16 \cdot 8^0}}{\sqrt[44]{3^{-\frac{1}{5}}}}$; 2) $\left(\sqrt[3]{3\sqrt{81}}\right)^2$.
- Известно, что $8^x = 5$. Найти 8^{-x+2} .
- Выполнить действия (a > 0, b > 0): 1) $\left(a^{\sqrt{3}+1}\right)^{\sqrt{3}} \cdot \frac{1}{a^{\sqrt{3}}}$; 2) $\frac{\sqrt[5]{ab} \sqrt[5]{b}}{\sqrt[5]{a}} \sqrt[5]{a}$.
- 4. Сравнить числа: 1) $(0,7)^{-\frac{3}{8}}u (0,7)^{-\frac{5}{8}}$; 2) $(\pi)^{\sqrt{3}}u (3,14)^{\sqrt{3}}$.

 5. Записать бесконечную периодическую десятичную дробь 0,3(1) в виде обыкновенной.
- 6. Упростить $\left(\frac{x-y}{\frac{3}{x^{\frac{1}{4}}+y^{\frac{1}{2}}}\cdot\frac{1}{x^{\frac{1}{4}}+y^{\frac{1}{4}}}}\right)\cdot\left(\frac{y}{x}\right)^{-\frac{1}{2}}$ $npu\ x>0,y>0.$

Контрольная работа № 2

по теме «Степенная функция»

<u>Вариант 1</u>

- 1. Найти область определения функции $y = \sqrt[4]{4 x^2}$.
- 2. Изобразить эскиз графика функции $y = x^{-5}$.
 - 1) Выяснить, на каких промежутках функция убывает
 - 2) Сравнить числа: a) $\left(\frac{1}{7}\right)^{-5}$ u 1; б) $(3,2)^{-5}$ и $\left(3\sqrt{2}\right)^{-5}$.
- 3. Решить уравнение: 1) $\sqrt{1-x} = 3$; 2) $\sqrt{x+2} = \sqrt{3-x}$; 3) $\sqrt{1-x} = x+1$; 4) $\sqrt{2x+5} \sqrt{x+6} = 1$.

$$4)\sqrt{2x+5} - \sqrt{x+6} = 1.$$

- 4. Найти функцию, обратную к функции $y = (x 8)^{-1}$, указать её область определения и множество значений.
- 5. Решить неравенство $\sqrt{x+8} > x+2$.

Вариант 2

- 1. Найти область определения функции $y = (x^2 9)^{-\frac{1}{3}}$.
- 2. Изобразить эскиз графика функции $y = x^{-6}$.

- 1) Выяснить, на каких промежутках функция возрастает.
- 2) Сравнить числа: a) $\left(\frac{1}{3}\right)^{-6}$ и $\left(\frac{1}{\sqrt{2}}\right)^{-6}$; б) $(4,2)^{-6}$ и 1.
- 3. Решить уравнение: 1) $\sqrt{x-2} = 4$; 2) $\sqrt{5-x} = \sqrt{x-2}$; 3) $\sqrt{1+x} = 1-x$;

$$4)\sqrt{3x+1} - \sqrt{x+8} = 1$$

- 4. Найти функцию, обратную к функции $y = 2(x + 6)^{-1}$, указать её область определения и множество значений
- 5. Решить неравенство $\sqrt{x-3}$ > x − 5. *Контрольная работа № 3*

по теме «Показательная функция»

Вариант 1

- 1. Решить уравнение: 1) $\left(\frac{1}{5}\right)^{2-3x} = 25$; 2) $4^x + 2^x 20 = 0$.
- 2. Решить неравенство $\left(\frac{3}{4}\right)^x > 1\frac{1}{3}$.
- 3. Решить систему уравнений $\begin{cases} x y = 4; \\ 5^{x+y} = 25. \end{cases}$
- 4. Решить неравенство: 1) $\left(\sqrt{5}\right)^{x-6} < \frac{1}{5};$ 2) $\left(\frac{2}{13}\right)^{x^2-1} \ge 1$.
- **5.** Решить уравнение $7^{x+1} + 3 \cdot 7^x = 2^{x+5} + 3 \cdot 2^x$

Вариант 2

- 1. Решить уравнение: 1) (0,1) $^{2x-3} = 10$; 2) $9^x 7 \cdot 3^x 18 = 0$.
- 2. Решить неравенство $\left(1\frac{1}{5}\right)^x < \frac{5}{6}$.
- 3. Решить систему уравнений $\begin{cases} x + y = -2; \\ 6^{x+5y} = 36. \end{cases}$ 4. Решить неравенство: 1) $\left(\sqrt[3]{3}\right)^{x+6} > \frac{1}{9}; 2$ ($1\frac{2}{7}\right)^{x^2-4} \le 1.$
- 5. Решить уравнение $3^{x+3} + 3^x = 5 \cdot 2^{x+4} 17 \cdot 2^x$

Контрольная работа № 4

по теме «Логарифмическая функция»

- 1. Вычислить: 1) $\log_{\underline{1}}$ 16; 2) $5^{1+\log_{5}3}$; 3) $\log_{3} 135 \log_{3} 20 + 2\log_{3} 6$.
- 2. В одной системе координат схематически построить графики функций $y = \log_{\frac{1}{4}} x$, $y = \left(\frac{1}{4}\right)^x$.
- 3. Сравнить числа $\log_{\frac{1}{2}} \frac{3}{4}$ и $\log_{\frac{1}{2}} \frac{4}{5}$.
- 4. Решить уравнение $\log_5 (2x 1) = 2$.
- 5. Решить неравенство $\log_{\frac{1}{3}}(x-5) > 1$.
 6. Решить уравнение $\log_2(x-2) + \log_2 x = 3$.

 - 7. Решить уравнение $\log_8 x + \log_{\sqrt{2}} x = 14$.
 - 8. Решить неравенство $\log_3^2 x 2 \log_3 x \le 3$.

Вариант 2

- 1. Вычислить: 1) $\log_3 \frac{1}{27}$; 2) $\left(\frac{1}{3}\right)^{2 \log_{\frac{1}{3}} 7}$; 3) $\log_2 56 + 2 \log_2 12 \log_2 63$.
- 2. В одной системе координат схематически построить графики функций $y = \log_4 x$, $y = 4^x$.
- 3. Сравнить числа $\log_{0.9} \frac{3}{2}$ и $\log_{0.9} \frac{4}{3}$.
- 4. Решить уравнение $\log_4 (2x + 3) = 3$.
- 5. Решить неравенство $\log_5 (x 3) < 2$.
- 6. Решить уравнение $\log_3 (x 8) + \log_3 x = 2$.
- 7. Решить уравнение $\log_{\sqrt{3}} x + \log_9 x = 10$.
- 8. Решить неравенство $\log_2^2 x 3 \log_2 x \le 4$.

Контрольная работа № 5

по теме «Основные тригонометрические формулы»

<u>Вариант 1</u>

- 1. Вычислить: 1) $\cos 765^\circ$; 2) $\sin \frac{19}{6}\pi$.
- 2. Вычислить $\sin \alpha$, если $\cos \alpha = \frac{5}{13}$ и $-6\pi < \alpha < -5\pi$.
- 3. Упростить выражение: 1) $\sin(\alpha + \beta) + \sin(\alpha \beta)$; 2) $\frac{\cos(\pi \alpha) + \cos(\frac{3}{2}\pi + \alpha)}{1 + 2\cos(-\alpha)\cdot\sin(-\alpha)}$.
- 4. Решить уравнение $\sin\left(\frac{\pi}{2} 3x\right)\cos 2x 1 = \sin 3x \cos\left(\frac{3\pi}{2} 2x\right)$.
- 5. Доказать тождество $\cos 4\alpha + 1 = \frac{1}{2}\sin 4\alpha \cdot (ctg \ a tg \ a)$.

Вариант 2

- 1. Вычислить 1) $\sin 765^{\circ}$; 2) $\cos \frac{19}{6}\pi$.
- 2. Вычислить $\cos \alpha$, если $\sin \alpha = 0.3$ и $-\frac{7}{2}\pi < \alpha < -\frac{5}{2}\pi$.
- 3. Упростить выражение 1) $\cos(\alpha \beta) \cos(\alpha + \beta)$; 2) $\frac{\cos(\frac{3}{2}\pi \alpha) + \cos(\pi + \alpha)}{1 + 2\cos(-\alpha)\cdot\sin(\alpha \frac{\pi}{2})}$
- 4. Решить уравнение $\cos\left(\frac{3\pi}{2} + x\right)\cos 3x \cos(\pi x) \cdot \sin 3x = -1$.
- 5. Доказать тождество $(tg a + ctg a)(1 cos 4a) = 4 sin 2\alpha.$

Контрольная работа № 6

по теме «Тригонометрические уравнения»

Вариант 1

- 1. Решить уравнение: 1) $\sqrt{2} \cos x 1 = 0$; 2) $3 \tan 2x + \sqrt{3} + 0$.
- 2. Найти решение уравнения $\sin \frac{x}{3} = -\frac{1}{2}$ на отрезке [0; 3π].
- 3. Решить уравнение 1) $3\cos x \cos^2 x = 0$;
 - 2) $6 \sin^2 x \sin x = 1$; 3) $4 \sin x + 5 \cos x = 4$; 4) $\sin^4 x + \cos^4 x = \cos^2 2x + 0.25$.

Вариант 2

1. Решить уравнение: 1) $\sqrt{2} \sin x - 1 = 0$; 2) $tg^{\frac{x}{2}} - \sqrt{3} + 0$.

- 2. Найти решение уравнения $\cos \frac{x}{2} = \frac{1}{2}$ на отрезке [0; 4 π].
- 3. Решить уравнение 1) $\sin^2 x \sin x = 0$;

2)
$$10 \cos^2 x + 3 \cos x = 1$$
; 3) $5 \sin x + \cos x = 5$; 4) $\sin^4 x + \cos^4 x = \sin^2 2x - 0.5$.

Итоговая контрольная работа № 7

Вариант 1

- 1. Решите неравенство $x^2(2x + 1)(x 3) \ge 0$.
- 2. Решите уравнение:

a)
$$\sqrt{3x+4} - \sqrt{x} = 2$$
; 6) $4^x - 3 \cdot 4^{x-2} = 52$; B) $\log_2 \frac{8}{x} - \log_2 \sqrt{2x} = -\frac{1}{2}$.

- 3. Сколько корней имеет уравнение $2\cos^2 x \sin(x \frac{\pi}{2}) + \tan x \tan(x + \frac{\pi}{2}) = 0$ на промежутке (0; 2π)? Укажите их.
- 4. <u>Найдите целые решения системы неравенств:</u> $\left\{ \frac{\left(\frac{1}{2}\right)^{-2x+1}}{log_4(x-6)^2} > 32, \right.$

Вариант 2

- 1. Решите неравенство $\frac{x^2 (x-2)}{8x+4}$
- 2. Решите уравнение:

a)
$$\sqrt{x+7} + \sqrt{x-2} = 9$$
; 6) $5^x - 7 \cdot 5^{x-2} = 90$; B) $\log_5 \frac{25}{x} + \log_5 \sqrt{5x} = 2$.

- 3. Сколько корней имеет уравнение $\sin^2 x + \cos^2 2x + \cos^2 (\frac{\pi}{2} + 2x) \cos x \operatorname{tgx} = 1$ на промежутке (0; 2π)? Укажите их.
- 4. Найдите целые решения системы неравенств: $\begin{cases} 3^{2x-6} < \frac{1}{27}, \\ log_3(1-x)^2 \le 2. \end{cases}$

Контрольные работы по алгебре и началам анализа в 10 классе Входной срез.

Вариант 1.

Решите систему уравнений $\begin{cases} x - y = 6, \\ xy = 16. \end{cases}$

Решите неравенство 5x - 1,5(2x + 3) < 4x + 1,5

Представьте выражение $\frac{a^{-3} \cdot a^{-5}}{a^{-10}}$ в виде степени с основанием a.

Постройте график функции $y = x^2 - 4$. Укажите, при каких значениях xфункция принимает положительные значения.

5. Упростите выражение $\frac{b^2 - ab}{a} \cdot \frac{a^2}{b^2 - a^2}$

Вариант 2.

ариант 2.

1. Решите систему уравнений $\begin{cases} x - y = 2, \\ xy = 15. \end{cases}$

2. Решите неравенство 2x-4.5 > 6x-0.5(4x-3)

3. Представьте выражение $\frac{y^{-6} \cdot y^{-8}}{v^{-16}}$ в виде степени с основанием y.

4. Постройте график функции $y = -x^2 + 1$. Укажите, при каких значениях x функция принимает отрицательные значения.

5. Упростите выражение $\frac{3b^2 + 3}{1 - b} + \frac{6b}{b - 1}$

Вводная контрольная работа по алгебре

Вариант 1

Часть 1

1. Найдите область определения функции $y = \sqrt{5 - x}$.

1)
$$x \ge 5$$
; 2) $x \ge -5$; 3) $x \ge 0$; 4) $x \le 5$.

2. Разложите квадратный трёхчлен $5x^2 - 6x + 1$ на множители

1)
$$5(x-1)(5x-1)$$
; 2) $(x-1)(5x-1)$; 3) $(x-1)(x-0,2)$; 4) $(5x-1)(x-0,2)$.

3. Найдите координаты вершины параболы, заданной формулой $y = 2x^2 - 8x + 6$

1) (2; -2); 2) (-2; 30); 3) (2; 18); 4. Решите неравенство $3x^2 - 4x - 7 < 0$

1)
$$\left[-1; 2\frac{1}{3}\right];$$
 2) $(-\infty; +\infty);$ 3) $\left(-1; 2\frac{1}{3}\right);$ 4) $\left(-2\frac{1}{3}; 1\right].$

5. Ордината вершины параболы $y = -(x + 6)^2 + 5$ равна

1) -5; 2) 5; 3) -6; 4) 6.

6. Решением системы $\begin{cases} y = x + 2 \\ v + x^2 = 4 \end{cases}$ является пара чисел

1) (-5; -3); 2) (1; 3) μ (-2; 0); 3) (1; -3); 4) (2; 0).

7. Найдите разность арифметической прогрессии 5; 8; 11...

1) -3; 2) 3; 3) 13; 4) 1,6.

8. Шестой член арифметической прогрессии 1; -2; -5... равен

	1) -14;	2) 12;	3) -15;	4) 16.		
9.	Знаменат	ель геом	етрическо	й прогрессии	4; 12; 36	равен
	1) 48; 2	2) 3; 3) -8; 4)	8.		
10	. Пятый чл	пен геоме	етрическо	й прогрессии	2; -6; 18 1	равен
	1) -54;	2) 162;	3) -162	; 4) 16.		
11	. Найдите	значение	е разности	$4\sqrt{81} - \sqrt[3]{216}$		
	1) 62.	2) 2.	2) 125.	1) 2		

Часть 2

1. Решите уравнение
$$x^4 - 13x^2 + 36 = 0$$

2. Решите неравенство
$$3x^2 + 2x - 1 \ge 0$$

3. Решите систему
$$\begin{cases} x - y = 2, \\ x^2 - xy + y^2 = 7 \end{cases}$$

4. Сумма трёх чисел, составляющих арифметическую прогрессию, равна 12, а произведение первого и второго – 8. Найдите эти числа.

Вариант 2

Часть 1

1. Найдите область определения функции $y = \sqrt{4 - x}$.

1)
$$x \ge 4$$
; 2) $x \ge -4$; 3) $x \ge 0$; 4) $x \le 4$.

2. Разложите квадратный трёхчлен $2x^2 + 5x - 3$ на множители 1) 2(x-3)(x-0.5); 2) 2(x-3)(x+0.5); 3) (x+3)(x-0.5); 4) (x+3)(2x-1).

3. Найдите координаты вершины параболы, заданной формулой $y = 3x^2 - 6x + 2$ 1) (2; 2); 2) (-1; 11); 3) (1; -1); 4) (4; 6).

4. Решите неравенство $4x^2 - 3x - 1 < 0$

1)
$$\left[-1;\frac{1}{4}\right]$$
; 2) $(-\infty;+\infty)$; 3) $\left(-\frac{1}{4};1\right)$; 4) $\left(-\frac{1}{4};1\right]$.

5. Ордината вершины параболы $y = -(x - 5)^2 + 6$ равна

6. Решением системы $\begin{cases} y = x - 3 \\ y - x^2 = -5 \end{cases}$ является пара чисел

7. Найдите разность арифметической прогрессии 6; 10; 14...

8. Шестой член арифметической прогрессии 2; -3; -8... равен

9. Знаменатель геометрической прогрессии 2; 6; 18... равен

10. Пятый член геометрической прогрессии -2; -6; -18... равен

11. Найдите значение разности $\sqrt[4]{625} - \sqrt[3]{64}$

Часть 2

1. Решите уравнение $x^4 - 65x^2 + 64 = 0$

2. Решите неравенство $3x^2 - 5x - 2 ≤ 0$

3. Решите систему
$$\begin{cases} x + y = 3, \\ x^2 - xy - y^2 = 1 \end{cases}$$

4. Сумма трёх чисел, составляющих арифметическую прогрессию, равна произведению первого и второго чисел и равна 15. Найдите эти числа.

Контрольная работа № 1

по теме «Действительные числа»

Вариант 1

- 1. Вычислить: 1) $\frac{\sqrt[3]{9\cdot 3^5}}{15^0\cdot 27^2\cdot 3^{-\frac{1}{3}}}$; 2) $\left(\sqrt[3]{2\sqrt{16}}\right)^2$.
- 2. Известно, что $12^x = 3$. Найти 12^{2x-1} .
- 3. Выполнить действия (a > 0, b > 0): 1) $a^{4+\sqrt{5}} \cdot \left(\frac{1}{a^{\sqrt{5}-1}}\right)^{\sqrt{5}+1}$; 2) $\frac{\sqrt[3]{a} + \sqrt[3]{ab}}{\sqrt[3]{a}} \sqrt[3]{b}$.
- 4. Сравнить числа: 1) $\left(\frac{2}{7}\right)^{\frac{3}{7}}$ $u\left(\frac{2}{7}\right)^{\frac{5}{7}}$; 2) $(4,2)^{\sqrt{7}}$ $u\left(4\frac{2}{5}\right)^{\sqrt{7}}$.
- 5. Записать бесконечную периодическую десятичную дробь 0,2(7) в виде обыкновенной.
- 6. Упростить $\left(\frac{a^{\frac{1}{2}}+2}{a+2a^{\frac{1}{2}}+1}-\frac{a^{\frac{1}{2}}-2}{a-1}\right)\cdot\frac{a^{\frac{1}{2}}+1}{a^{\frac{1}{2}}}$ $npu\ a>0,\ a\neq 1.$

Вариант 2

- Вычислить 1) $\frac{2^9 \cdot \sqrt[5]{16 \cdot 8^0}}{\sqrt[44]{3^{-\frac{1}{5}}}}$; 2) $\left(\sqrt[3]{3\sqrt{81}}\right)^2$.
- Известно, что $8^x = 5$. Найти 8^{-x+2} .
- Выполнить действия (a > 0, b > 0): 1) $\left(a^{\sqrt{3}+1}\right)^{\sqrt{3}} \cdot \frac{1}{a^{\sqrt{3}}}$; 2) $\frac{\sqrt[5]{ab} \sqrt[5]{b}}{\sqrt[5]{a}} \sqrt[5]{a}$.
- 4. Сравнить числа: 1) $(0,7)^{-\frac{3}{8}}u (0,7)^{-\frac{5}{8}}$; 2) $(\pi)^{\sqrt{3}}u (3,14)^{\sqrt{3}}$.

 5. Записать бесконечную периодическую десятичную дробь 0,3(1) в виде обыкновенной.
- 6. Упростить $\left(\frac{x-y}{\frac{3}{x^{\frac{1}{4}}+y^{\frac{1}{2}}}\cdot\frac{1}{x^{\frac{1}{4}}+y^{\frac{1}{4}}}}\right)\cdot\left(\frac{y}{x}\right)^{-\frac{1}{2}}$ $npu\ x>0,y>0.$

Контрольная работа № 2

по теме «Степенная функция»

<u>Вариант 1</u>

- 1. Найти область определения функции $y = \sqrt[4]{4 x^2}$.
- 2. Изобразить эскиз графика функции $y = x^{-5}$.
 - 1) Выяснить, на каких промежутках функция убывает
 - 2) Сравнить числа: a) $\left(\frac{1}{7}\right)^{-5}$ u 1; б) $(3,2)^{-5}$ и $\left(3\sqrt{2}\right)^{-5}$.
- 3. Решить уравнение: 1) $\sqrt{1-x} = 3$; 2) $\sqrt{x+2} = \sqrt{3-x}$; 3) $\sqrt{1-x} = x+1$; 4) $\sqrt{2x+5} \sqrt{x+6} = 1$.

$$4)\sqrt{2x+5} - \sqrt{x+6} = 1.$$

- 4. Найти функцию, обратную к функции $y = (x 8)^{-1}$, указать её область определения и множество значений.
- 5. Решить неравенство $\sqrt{x+8} > x+2$.

Вариант 2

- 1. Найти область определения функции $y = (x^2 9)^{-\frac{1}{3}}$.
- 2. Изобразить эскиз графика функции $y = x^{-6}$.

- 1) Выяснить, на каких промежутках функция возрастает.
- 2) Сравнить числа: a) $\left(\frac{1}{3}\right)^{-6}$ и $\left(\frac{1}{\sqrt{2}}\right)^{-6}$; б) $(4,2)^{-6}$ и 1.
- 3. Решить уравнение: 1) $\sqrt{x-2} = 4$; 2) $\sqrt{5-x} = \sqrt{x-2}$; 3) $\sqrt{1+x} = 1-x$;

$$4)\sqrt{3x+1} - \sqrt{x+8} = 1$$

- 4. Найти функцию, обратную к функции $y = 2(x + 6)^{-1}$, указать её область определения и множество значений
- 5. Решить неравенство $\sqrt{x-3}$ > x − 5. *Контрольная работа № 3*

по теме «Показательная функция»

Вариант 1

- 1. Решить уравнение: 1) $\left(\frac{1}{5}\right)^{2-3x} = 25$; 2) $4^x + 2^x 20 = 0$.
- 2. Решить неравенство $\left(\frac{3}{4}\right)^x > 1\frac{1}{3}$.
- 3. Решить систему уравнений $\begin{cases} x y = 4; \\ 5^{x+y} = 25. \end{cases}$
- 4. Решить неравенство: 1) $\left(\sqrt{5}\right)^{x-6} < \frac{1}{5};$ 2) $\left(\frac{2}{13}\right)^{x^2-1} \ge 1$.
- **5.** Решить уравнение $7^{x+1} + 3 \cdot 7^x = 2^{x+5} + 3 \cdot 2^x$

Вариант 2

- 1. Решить уравнение: 1) (0,1) $^{2x-3} = 10$; 2) $9^x 7 \cdot 3^x 18 = 0$.
- 2. Решить неравенство $\left(1\frac{1}{5}\right)^x < \frac{5}{6}$.
- 3. Решить систему уравнений $\begin{cases} x + y = -2; \\ 6^{x+5y} = 36. \end{cases}$ 4. Решить неравенство: 1) $\left(\sqrt[3]{3}\right)^{x+6} > \frac{1}{9}; 2$ ($1\frac{2}{7}\right)^{x^2-4} \le 1.$
- 5. Решить уравнение $3^{x+3} + 3^x = 5 \cdot 2^{x+4} 17 \cdot 2^x$

Контрольная работа № 4

по теме «Логарифмическая функция»

- 1. Вычислить: 1) $\log_{\underline{1}}$ 16; 2) $5^{1+\log_{5}3}$; 3) $\log_{3} 135 \log_{3} 20 + 2\log_{3} 6$.
- 2. В одной системе координат схематически построить графики функций $y = \log_{\frac{1}{4}} x$, $y = \left(\frac{1}{4}\right)^x$.
- 3. Сравнить числа $\log_{\frac{1}{2}} \frac{3}{4}$ и $\log_{\frac{1}{2}} \frac{4}{5}$.
- 4. Решить уравнение $\log_5 (2x 1) = 2$.
- 5. Решить неравенство $\log_{\frac{1}{3}}(x-5) > 1$.
 6. Решить уравнение $\log_2(x-2) + \log_2 x = 3$.

 - 7. Решить уравнение $\log_8 x + \log_{\sqrt{2}} x = 14$.
 - 8. Решить неравенство $\log_3^2 x 2 \log_3 x \le 3$.

Вариант 2

- 1. Вычислить: 1) $\log_3 \frac{1}{27}$; 2) $\left(\frac{1}{3}\right)^{2 \log_{\frac{1}{3}} 7}$; 3) $\log_2 56 + 2 \log_2 12 \log_2 63$.
- 2. В одной системе координат схематически построить графики функций $y = \log_4 x$, $y = 4^x$.
- 3. Сравнить числа $\log_{0.9} \frac{3}{2}$ и $\log_{0.9} \frac{4}{3}$.
- 4. Решить уравнение $\log_4 (2x + 3) = 3$.
- 5. Решить неравенство $\log_5 (x 3) < 2$.
- 6. Решить уравнение $\log_3 (x 8) + \log_3 x = 2$.
- 7. Решить уравнение $\log_{\sqrt{3}} x + \log_9 x = 10$.
- 8. Решить неравенство $\log_2^2 x 3 \log_2 x \le 4$.

Контрольная работа № 5

по теме «Основные тригонометрические формулы»

<u>Вариант 1</u>

- 1. Вычислить: 1) $\cos 765^\circ$; 2) $\sin \frac{19}{6}\pi$.
- 2. Вычислить $\sin \alpha$, если $\cos \alpha = \frac{5}{13}$ и $-6\pi < \alpha < -5\pi$.
- 3. Упростить выражение: 1) $\sin(\alpha + \beta) + \sin(\alpha \beta)$; 2) $\frac{\cos(\pi \alpha) + \cos(\frac{3}{2}\pi + \alpha)}{1 + 2\cos(-\alpha)\cdot\sin(-\alpha)}$.
- 4. Решить уравнение $\sin\left(\frac{\pi}{2} 3x\right)\cos 2x 1 = \sin 3x \cos\left(\frac{3\pi}{2} 2x\right)$.
- 5. Доказать тождество $\cos 4\alpha + 1 = \frac{1}{2}\sin 4\alpha \cdot (ctg \ a tg \ a)$.

Вариант 2

- 1. Вычислить 1) $\sin 765^{\circ}$; 2) $\cos \frac{19}{6}\pi$.
- 2. Вычислить $\cos \alpha$, если $\sin \alpha = 0.3$ и $-\frac{7}{2}\pi < \alpha < -\frac{5}{2}\pi$.
- 3. Упростить выражение 1) $\cos(\alpha \beta) \cos(\alpha + \beta)$; 2) $\frac{\cos(\frac{3}{2}\pi \alpha) + \cos(\pi + \alpha)}{1 + 2\cos(-\alpha)\cdot\sin(\alpha \frac{\pi}{2})}$
- 4. Решить уравнение $\cos\left(\frac{3\pi}{2} + x\right)\cos 3x \cos(\pi x) \cdot \sin 3x = -1$.
- 5. Доказать тождество $(tg a + ctg a)(1 cos 4a) = 4 sin 2\alpha.$

Контрольная работа № 6

по теме «Тригонометрические уравнения»

Вариант 1

- 1. Решить уравнение: 1) $\sqrt{2} \cos x 1 = 0$; 2) $3 \tan 2x + \sqrt{3} + 0$.
- 2. Найти решение уравнения $\sin \frac{x}{3} = -\frac{1}{2}$ на отрезке [0; 3π].
- 3. Решить уравнение 1) $3\cos x \cos^2 x = 0$;
 - 2) $6 \sin^2 x \sin x = 1$; 3) $4 \sin x + 5 \cos x = 4$; 4) $\sin^4 x + \cos^4 x = \cos^2 2x + 0.25$.

Вариант 2

1. Решить уравнение: 1) $\sqrt{2} \sin x - 1 = 0$; 2) $tg^{\frac{x}{2}} - \sqrt{3} + 0$.

- 2. Найти решение уравнения $\cos \frac{x}{2} = \frac{1}{2}$ на отрезке [0; 4 π].
- 3. Решить уравнение 1) $\sin^2 x \sin x = 0$;

2)
$$10 \cos^2 x + 3 \cos x = 1$$
; 3) $5 \sin x + \cos x = 5$; 4) $\sin^4 x + \cos^4 x = \sin^2 2x - 0.5$.

Итоговая контрольная работа № 7

Вариант 1

- 1. Решите неравенство $x^2(2x + 1)(x 3) \ge 0$.
- 2. Решите уравнение:

a)
$$\sqrt{3x+4} - \sqrt{x} = 2$$
; 6) $4^x - 3 \cdot 4^{x-2} = 52$; B) $\log_2 \frac{8}{x} - \log_2 \sqrt{2x} = -\frac{1}{2}$.

- 3. Сколько корней имеет уравнение $2\cos^2 x \sin(x \frac{\pi}{2}) + \tan x \tan(x + \frac{\pi}{2}) = 0$ на промежутке (0; 2π)? Укажите их.
- 4. <u>Найдите целые решения системы неравенств:</u> $\left\{ \frac{\left(\frac{1}{2}\right)^{-2x+1}}{log_4(x-6)^2} > 32, \right.$

Вариант 2

- 1. Решите неравенство $\frac{x^2 (x-2)}{8x+4}$
- 2. Решите уравнение:

a)
$$\sqrt{x+7} + \sqrt{x-2} = 9$$
; 6) $5^x - 7 \cdot 5^{x-2} = 90$; B) $\log_5 \frac{25}{x} + \log_5 \sqrt{5x} = 2$.

- 3. Сколько корней имеет уравнение $\sin^2 x + \cos^2 2x + \cos^2 (\frac{\pi}{2} + 2x) \cos x \operatorname{tgx} = 1$ на промежутке (0; 2π)? Укажите их.
- 4. Найдите целые решения системы неравенств: $\begin{cases} 3^{2x-6} < \frac{1}{27}, \\ log_3(1-x)^2 \le 2. \end{cases}$

Контрольные работы по алгебре и началам анализа в 11 классе Контрольная работа № 1

по теме «Тригонометрические функции»

Вариант 1

- 1. Найдите область определения и множество значений функции $y = 2 \cos x$.
- 2. Выясните, является ли функция $y = \sin x tg x$ четной или нечетной.
- 3. Изобразите схематически график функции $y = \sin x + 1$ на отрезке $\left[-\frac{\pi}{2}; 2\pi \right]$.
- 4. Найдите наибольшее и наименьшее значения функции $y = 3\sin x \cdot \cos x + 1$.
- 5. Постройте график функции $y = 0.5 \cos x 2$. При каких значениях x функция возрастает? Убывает?

Вариант 2

- 1. Найдите область определения и множество значений функции $y = 0.5 \cos x$.
- 2. Выясните, является ли функция $y = \cos x x^2$ четной или нечетной.
- 3. Изобразите схематически график функции $y = \cos x 1$ на отрезке $\left[-\frac{\pi}{2}; 2\pi \right]$.
- 4. Найдите наибольшее и наименьшее значения функции $y = \frac{1}{3} \cos^2 x \frac{1}{3} \sin^2 x + 1$.
- 5. Постройте график функции $y = 2 \sin x + 1$. При каких значениях x функция возрастает? Убывает?

Контрольная работа № 2

по теме «Производная и ее геометрический смысл»

Вариант 1

- 1. Найдите производную функции: a) $3x^2 \frac{1}{x^3}$; б) $\left(\frac{x}{3} + 7\right)^6$; в) $e^x \cos x$; г) $\frac{2^x}{\sin x}$.
- 2. Найдите значение производной функции $f(x) = 1 6\sqrt[3]{x}$ в точке $x_0 = 8$.
- 3. Запишите уравнение касательной к графику функции $f(x) = \sin x 3x + 2$ в точке $x_0 = 0$.
- 4. Найдите значения x, при которых значения производной функции $f(x) = \frac{x+1}{x^2+3}$ положительны.
- 5. Найдите точки графика функции $f(x) = x^3 3x^2$, в которых касательная к нему параллельна оси абсцисс.
- 6. Найдите производную функции $f(x) = \log_3(\sin x)$.

Вариант 2

- 1. Найдите производную функции: a) $2x^3 \frac{1}{x^2}$; б) $(4 3x)^6$; в) $e^x \cdot \sin x$ г) $\frac{3^x}{\cos x}$.
- 2. Найдите значение производной функции $f(x) = 2 \frac{1}{\sqrt{x}}$ в точке $x_0 = \frac{1}{4}$.
- 3. Запишите уравнение касательной к графику функции $f(x) = 4x \sin x + 1$ в точке $x_0 = 0$.
- 4. Найдите значения x, при которых значения производной функции $f(x) = \frac{1-x}{x^2+8}$ отрицательны.
- 5. Найдите точки графика функции $f(x) = x^3 + 3x^2$, в которых касательная к нему параллельна оси абсцисс.
- 6. Найдите производную функции $f(x) = \cos(\log_2 x)$.

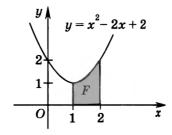
Контрольная работа № 3

по теме «Применение производной к исследованию функций»

Вариант 1

- 1. Найдите стационарные точки функции $f(x) = x^3 2x^2 + x + 3$.
- 2. Найдите экстремумы функции: a) $f(x) = x^3 2x^2 + x + 3$; б) $f(x) = e^x(2x 3)$.
- 3. Найдите интервалы возрастания и убывания функции $f(x) = x^3 2x^2 + x + 3$.
- 4. Постройте график функции $f(x) = x^3 2x^2 + x + 3$ на отрезке [-1; 2].
- 5. Найдите наибольшее и наименьшее значения функции $f(x) = x^3 2x^2 + x + 3$ на отрезке [0; 1,5].
- 6. Среди прямоугольников, сумма длин трех сторон которых равна 20, найдите прямоугольник наибольшей площади.

Вариант 2

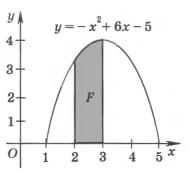

- 1. Найдите стационарные точки функции $f(x) = x^3 x^2 x + 2$.
- 2. Найдите экстремумы функции: a) $f(x) = x^3 x^2 x + 2$; б) $f(x) = e^x (5 4x)$.
- 3. Найдите интервалы возрастания и убывания функции $f(x) = x^3 x^2 x + 2$.
- 4. Постройте график функции $f(x) = x^3 x^2 x + 2$ на отрезке [-1; 2].
- 5. Найдите наибольшее и наименьшее значения функции $f(x) = x^3 x^2 x + 2$ на отрезке [0; 1,5].
- 6. Найдите ромб с наибольшей площадью, если известно, что сумма длин его диагоналей равна 10.

Контрольная работа № 4

по теме «Интеграл»

Вариант 1

- 1. Докажите, что функция $F(x) = 3x + \sin x e^{2x}$ является первообразной функции $f(x) = 3 + \cos x 2e^{2x}$ на всей числовой оси.
- 2. Найдите первообразную F функции f (x) = $2\sqrt{x}$, график которой проходит через точку $A(0; \frac{7}{8})$.
- 3. Вычислите площадь фигуры, изображенной на рисунке.



- 4. Вычислить интеграл: a) $\int_{1}^{2} \left(x + \frac{2}{x}\right) dx$; б) $\int_{0}^{\frac{\pi}{2}} cos^{2}x \ dx$.
- 5. Найдите площадь фигуры, ограниченной прямой y = 1 2x и графиком функции $y = x^2 5x 3$.

Вариант 2

1. Докажите, что функция $F(x) = x + \cos x + e^{3x}$ является первообразной функции f(x) = 1 - $\sin x + 3e^{3x}$ на всей числовой оси.

2. Найдите первообразную F функции f (x) = - $3\sqrt[3]{x}$, график которой проходит через точку $A(0; \frac{3}{4})$.

3. Вычислите площадь фигуры, изображенной на рисунке.

- 4. Вычислить интеграл: a) $\int_{1}^{3} \left(x^{2} + \frac{3}{x}\right) dx$; б) $\int_{0}^{\frac{\pi}{2}} \sin^{2}x \ dx$.
- 5. Найдите площадь фигуры, ограниченной прямой y = 3 2x и графиком функции $y = x^2 + 3x 3$.

Тест

для проверки обязательных результатов обучения за курс алгебры и начал анализа

1.	Вычислить	√16.		
	a) 8;	б) ±8;	в) 4;	r) ±4
2.	Вычислить	$\sqrt{2}\cdot\sqrt{32}$		

- а) 8; б) \pm 8; в) 16; г) \pm 64. 3. Вычислить $\sqrt{1 \frac{25}{144}}$
- a) $1\frac{5}{12}$; 6) $1\frac{1}{12}$; B) $\pm \frac{5}{12}$; Γ) $\pm 1\frac{1}{12}$.
- 4. Найти $\sqrt[4]{\alpha^{24}}$, если *a* ≥ 0.

a)
$$a^{20}$$
; 6) a^{6} ; B) $\pm a^{20}$; Γ) $\pm a^{6}$.

5. Упростить
$$\sqrt[6]{\sqrt{\alpha}}$$
, если $a \ge 0$.

а) $\frac{\alpha}{12}$ б) $\sqrt[3]{\alpha}$; в) - $\sqrt[3]{\alpha}$; г) $\sqrt[12]{\alpha}$.

- 6. Вынести множитель из-под знака корня: $\sqrt[3]{54}$ а) $2\sqrt[3]{3}$; б) $3\sqrt[3]{2}$; в) 18; г) $5\sqrt[3]{4}$
- 7. Извлечь корень: $\sqrt{\left(2-\sqrt{5}\right)^2}$. $a)\sqrt{5}-2;$ $6)2-\sqrt{5};$ b) $1-\sqrt{5};$ $\Gamma)$ $1-\sqrt[4]{5}.$
- 8. Найти значение выражения $5^0 + \left(-1\frac{1}{2}\right)^3$. а) $3\frac{7}{8}$; б) $-\frac{1}{8}$; в) $-2\frac{3}{8}$; г) - $3\frac{3}{8}$.
- 9. Найти значение выражения $\left(\frac{1}{4}\right)^{-2} + (-3)^2$.
 - a) $-9\frac{1}{16}$; 6) $8\frac{15}{16}$; B) -25; Γ) 25.
- 10. Представить выражение $\sqrt[4]{\alpha^5}$, где $a \ge 0$, в виде степени.

a) $(0.35)^{\pi} < (0.35)^{3}$; b) $(0.35)^{\pi} = (0.35)^{3}$; B) $(0.35)^{\pi} > (0.35)^{3}$					
14. Упростить выражение $\frac{a-b}{a^{\frac{1}{2}}-b^{\frac{1}{2}}}$					
14. Упростить выражение $\frac{a-b}{a^{\frac{1}{2}}-b^{\frac{1}{2}}}$ a) $a^{\frac{1}{2}}+b^{\frac{1}{2}}$; б) $a^{\frac{1}{2}}-b^{\frac{1}{2}}$; в) $a+b$; г) $a-b$.					
15. Решить уравнение $\sqrt{2x^2 - 3} = x$.					
a) $x = -3$; Б) $x_1 = -3$, $x_2 = 3$; в) $x = \sqrt{3}$; Г) нет корней.					
16. Решить уравнение $2^x = -4$. <i>a)</i> $x = -2$; <i>б)</i> $x = -0.5$; <i>в)</i> $x = 2$; <i>г)</i> нет корней.					
17. Решить неравенство $\left(\frac{1}{5}\right)^x > 25$.					
a) $x < -2$; 6) $x > -2$; 6) $x < 2$; 2) $x = 2$.					
18. Указать уравнение, корнем которого является логарифм числа 5 по основанию 3.					
a) $5^x = 3$; 6) $x^5 = 3$; B) $3^x = 5$; Γ) $x^3 = 5$.					
19. Найти log _{0,5} 8.					
a) 3; 6) -3; B) 4; Γ) -4.					
20. Вычислить 4 ^{1+ log₄ 3} .					
a) 7; б) 8; в) 12; г) 256.					
21. Упростить разность log ₆ 72-log ₆ 2.					
a) $\log_6 70$; 6) $\frac{\log_6 72}{\log_6 2}$ B) 2; Γ) 6.					
22. Найти $\lg a^3$, если $\lg a = m$.					
a) $\frac{m}{3}$; 6) 3 + m; B) 3 m ; Γ) m^3 .					
23. Выразить $\log_5 e$ через натуральный логарифм.					
a) $\frac{1}{\ln 5}$; δ) $\frac{1}{\lg 5}$; Γ) $\ln 5$.					
24. Решить уравнение $log_5x = -2$.					
а) $x = -2$; б) $x = 0, 1$; в) $x = 0,04$; г) нет корней.					
25. Решить неравенство $log_{0,3}x>1$.					
a) $x > 1$; 6) $x > 0.3$; B) $x < 0.3$; r) $0 < x < 0.3$.					
26. Найти радианную меру угла 240°.					
a) $\frac{7}{5}\pi$; 6) $\frac{2}{3}\pi$; b) $\frac{4}{3}\pi$; Γ) $\frac{3}{2}\pi$.					
27. Найти значение выражения $\sin\left(-\frac{\pi}{4}\right) + \cos\left(-\frac{\pi}{6}\right)$					

a) $\alpha^{\frac{4}{5}}$; 6) $\alpha^{\frac{5}{4}}$; B) a^{9} ; Γ) a^{20} .

11. Выполнить деление: $4^{\frac{5}{3}}:4^{\frac{5}{6}}$.

12. Возвести в степень: $\left(\frac{2}{\alpha^6}\right)^3$.

a) 1; 6) 2; b) 4^2 ; Γ) $\mathbf{4}^{\frac{5}{6}}$.

13. Сравнить числа $(0,35)^{\pi}$ и $(0,35)^{3}$.

a) $\frac{6}{\alpha^{18}}$; 6) $\frac{8}{\alpha^{18}}$; B) $\frac{8}{\alpha^9}$; Γ) $\frac{6}{\alpha^9}$.

a)
$$\frac{\sqrt{2}-\sqrt{3}}{2}$$
; 6) $\frac{-\sqrt{2}+\sqrt{3}}{2}$; ; B $\frac{-\sqrt{2}+1}{2}$;; Γ) $\frac{-\sqrt{2}-1}{2}$;

28. Найти sin a, если $\cos a = \frac{5}{13}$ b $\frac{3}{2}\pi < \alpha < 2\pi$

a)
$$\frac{8}{13}$$
; 6) $-\frac{8}{13}$; B) $\frac{12}{13}$; Γ) $-\frac{12}{13}$.

B)
$$\frac{12}{13}$$
; Γ) - $\frac{12}{13}$

29. Найти tga, если ctga = 0.4

a)
$$\frac{5}{2}$$
; 6) $\frac{3}{5}$; B) $-\frac{5}{2}$; Γ) $-\frac{3}{5}$

30. Найти sin2a, если sin $a = \frac{4}{5}$, cos $a = -\frac{3}{5}$

a)
$$-\frac{24}{25}$$
; 6) $-\frac{12}{25}$; b) $\frac{1}{5}$; Γ) $-\frac{7}{25}$.

B)
$$\frac{1}{5}$$
; Γ) - $\frac{7}{25}$.

31. Найти cos 2a, если sin a = $-\frac{4}{5}$, cosa = $-\frac{3}{5}$

a)1;
$$6) - \frac{7}{25}$$

$$6) - \frac{7}{25};$$
 $B) \frac{24}{25};$ $\Gamma) \frac{7}{25}.$

32. Записать соз 580° с помощью наименьшего положительного угла.

в)
$$-\cos 40^{\circ}$$
; г) $\cos 40^{\circ}$.

33. Упростить выражение $\cos\left(\frac{\pi}{2} + \alpha\right) \cdot \sin(\pi - \alpha) + tg\left(\frac{3}{2}\pi - \alpha\right)$

a) $\cos a \sin a - \tan a$; 6) $\cos^2 a + \tan a$; B) $\cos^2 a - \cot a$; r) $-\sin^2 a + \cot a$

34. Указать выражение, которое не имеет смысла.

a)
$$\arccos \frac{\pi}{4}$$
; 6) $\arcsin 1$; B) $\arctan 15$; Γ) $\arccos \sqrt{3}/2$

35. Решить уравнение $\cos x = -1$ (в ответах $k \in \mathbb{Z}$)

a)
$$x = \pi + \pi k$$
; 6) $x = \pi + 2\pi k$; B) $x = \frac{\pi}{2} + 2\pi k$; F) $x = -\frac{\pi}{2} + 2\pi k$

36. Решить уравнение $\sin x = 0$ (в ответах $k \in \mathbb{Z}$)

a)
$$x = \frac{\pi}{2} + \pi k$$
; б) $x = \frac{\pi}{2} + 2\pi k$; в) $x = \pi k$; г) $x = 2\pi k$

37. Найти $\arcsin\left(-\frac{1}{2}\right)$

a)
$$\frac{2}{3}\pi$$
; б) $\frac{5}{6}\pi$; в) - $\frac{\pi}{3}$; Γ) - $\frac{\pi}{6}$.

38. Найти $arccos\left(-\frac{\sqrt{3}}{2}\right)$

a)
$$\frac{5}{6}\pi$$
; 6) $\frac{2}{3}\pi$; B) $-\frac{\pi}{3}$; Γ) $-\frac{\pi}{6}$

39. Найти производную функции $x^{\frac{1}{5}}$, где x > 0

a)
$$-\frac{4}{5}x^{\frac{1}{5}}$$
; 6) $5x^{-\frac{4}{5}}$; b) $\frac{1}{5}x^{-\frac{4}{5}}$; Γ) $\frac{1}{5}x^{5}$.

6)
$$5x^{-\frac{4}{5}}$$
;

B)
$$\frac{1}{5} x^{-\frac{4}{5}}$$
;

$$\Gamma \frac{1}{5} x^5$$
.

40. Найти производную функции 3cosx + 5

a)
$$3\sin x$$
; б) $-3\sin x$; в) $2\cos x + 4$; г) $-3\sin x + 5$

41. Найти производную функции х log_2x

a)
$$1 + \frac{1}{x \ln 2}$$
; $6) \frac{x}{\ln 2}$; B) $x + \frac{1}{\ln 2}$; Γ) $x + \frac{1}{x}$.

42. Найти точку (точки) экстремума функции $y = 2x^3 - 3x^2$.

a)
$$\frac{3}{2}$$
; 6) $x_1 = 0$, $x_2 = \frac{3}{2}$; B) $x_{1=0}$, $x_2 = 1$; $x_1 = 0$, $x_2 = 1$; $x_1 = 0$, $x_2 = 1$

43. Найти промежуток убывания функции $y = -x^2 + 4x - 3$.

a)
$$[2; +\infty)$$
; 6) $(-\infty; 2]$; B) $[1; +\infty)$; Γ) $(-\infty; 1]$

44. Найти все первообразные функции $y = x^6$.

a) $6x^5 + C$; $6(x^7 + C)$; $8(x^6 + C)$; $(x^7 + C)$

45. Найти первообразную функции $f(x) = \sin x$, если $F\left(\frac{\pi}{3}\right) = \frac{1}{2}$.

Контрольные работы по алгебре и началам анализа в 11 классе Контрольная работа № 1

по теме «Тригонометрические функции»

Вариант 1

- 1. Найдите область определения и множество значений функции $y = 2 \cos x$.
- 2. Выясните, является ли функция $y = \sin x tg x$ четной или нечетной.
- 3. Изобразите схематически график функции $y = \sin x + 1$ на отрезке $\left[-\frac{\pi}{2}; 2\pi \right]$.
- 4. Найдите наибольшее и наименьшее значения функции $y = 3\sin x \cdot \cos x + 1$.
- 5. Постройте график функции $y = 0.5 \cos x 2$. При каких значениях x функция возрастает? Убывает?

Вариант 2

- 1. Найдите область определения и множество значений функции $y = 0.5 \cos x$.
- 2. Выясните, является ли функция $y = \cos x x^2$ четной или нечетной.
- 3. Изобразите схематически график функции $y = \cos x 1$ на отрезке $\left[-\frac{\pi}{2}; 2\pi \right]$.
- 4. Найдите наибольшее и наименьшее значения функции $y = \frac{1}{3} \cos^2 x \frac{1}{3} \sin^2 x + 1$.
- 5. Постройте график функции $y = 2 \sin x + 1$. При каких значениях x функция возрастает? Убывает?

Контрольная работа № 2

по теме «Производная и ее геометрический смысл»

Вариант 1

- 1. Найдите производную функции: a) $3x^2 \frac{1}{x^3}$; б) $\left(\frac{x}{3} + 7\right)^6$; в) $e^x \cos x$; г) $\frac{2^x}{\sin x}$.
- 2. Найдите значение производной функции $f(x) = 1 6\sqrt[3]{x}$ в точке $x_0 = 8$.
- 3. Запишите уравнение касательной к графику функции $f(x) = \sin x 3x + 2$ в точке $x_0 = 0$.
- 4. Найдите значения x, при которых значения производной функции $f(x) = \frac{x+1}{x^2+3}$ положительны.
- 5. Найдите точки графика функции $f(x) = x^3 3x^2$, в которых касательная к нему параллельна оси абсцисс.
- 6. Найдите производную функции $f(x) = \log_3(\sin x)$.

Вариант 2

- 1. Найдите производную функции: a) $2x^3 \frac{1}{x^2}$; б) $(4 3x)^6$; в) $e^x \cdot \sin x$ г) $\frac{3^x}{\cos x}$.
- 2. Найдите значение производной функции $f(x) = 2 \frac{1}{\sqrt{x}}$ в точке $x_0 = \frac{1}{4}$.
- 3. Запишите уравнение касательной к графику функции $f(x) = 4x \sin x + 1$ в точке $x_0 = 0$.
- 4. Найдите значения x, при которых значения производной функции $f(x) = \frac{1-x}{x^2+8}$ отрицательны.
- 5. Найдите точки графика функции $f(x) = x^3 + 3x^2$, в которых касательная к нему параллельна оси абсцисс.
- 6. Найдите производную функции $f(x) = \cos(\log_2 x)$.

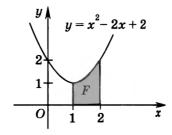
Контрольная работа № 3

по теме «Применение производной к исследованию функций»

Вариант 1

- 1. Найдите стационарные точки функции $f(x) = x^3 2x^2 + x + 3$.
- 2. Найдите экстремумы функции: a) $f(x) = x^3 2x^2 + x + 3$; б) $f(x) = e^x(2x 3)$.
- 3. Найдите интервалы возрастания и убывания функции $f(x) = x^3 2x^2 + x + 3$.
- 4. Постройте график функции $f(x) = x^3 2x^2 + x + 3$ на отрезке [-1; 2].
- 5. Найдите наибольшее и наименьшее значения функции $f(x) = x^3 2x^2 + x + 3$ на отрезке [0; 1,5].
- 6. Среди прямоугольников, сумма длин трех сторон которых равна 20, найдите прямоугольник наибольшей площади.

Вариант 2

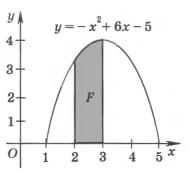

- 1. Найдите стационарные точки функции $f(x) = x^3 x^2 x + 2$.
- 2. Найдите экстремумы функции: a) $f(x) = x^3 x^2 x + 2$; б) $f(x) = e^x (5 4x)$.
- 3. Найдите интервалы возрастания и убывания функции $f(x) = x^3 x^2 x + 2$.
- 4. Постройте график функции $f(x) = x^3 x^2 x + 2$ на отрезке [-1; 2].
- 5. Найдите наибольшее и наименьшее значения функции $f(x) = x^3 x^2 x + 2$ на отрезке [0; 1,5].
- 6. Найдите ромб с наибольшей площадью, если известно, что сумма длин его диагоналей равна 10.

Контрольная работа № 4

по теме «Интеграл»

Вариант 1

- 1. Докажите, что функция $F(x) = 3x + \sin x e^{2x}$ является первообразной функции $f(x) = 3 + \cos x 2e^{2x}$ на всей числовой оси.
- 2. Найдите первообразную F функции f (x) = $2\sqrt{x}$, график которой проходит через точку $A(0; \frac{7}{8})$.
- 3. Вычислите площадь фигуры, изображенной на рисунке.



- 4. Вычислить интеграл: a) $\int_{1}^{2} \left(x + \frac{2}{x}\right) dx$; б) $\int_{0}^{\frac{\pi}{2}} cos^{2}x \ dx$.
- 5. Найдите площадь фигуры, ограниченной прямой y = 1 2x и графиком функции $y = x^2 5x 3$.

Вариант 2

1. Докажите, что функция $F(x) = x + \cos x + e^{3x}$ является первообразной функции f(x) = 1 - $\sin x + 3e^{3x}$ на всей числовой оси.

2. Найдите первообразную F функции f (x) = - $3\sqrt[3]{x}$, график которой проходит через точку $A(0; \frac{3}{4})$.

3. Вычислите площадь фигуры, изображенной на рисунке.

- 4. Вычислить интеграл: a) $\int_{1}^{3} \left(x^{2} + \frac{3}{x}\right) dx$; б) $\int_{0}^{\frac{\pi}{2}} \sin^{2}x \ dx$.
- 5. Найдите площадь фигуры, ограниченной прямой y = 3 2x и графиком функции $y = x^2 + 3x 3$.

Тест

для проверки обязательных результатов обучения за курс алгебры и начал анализа

1.	Вычислить	√16.		
	a) 8;	б) ±8;	в) 4;	r) ±4
2.	Вычислить	$\sqrt{2}\cdot\sqrt{32}$		

- а) 8; б) \pm 8; в) 16; г) \pm 64. 3. Вычислить $\sqrt{1 \frac{25}{144}}$
- a) $1\frac{5}{12}$; 6) $1\frac{1}{12}$; B) $\pm \frac{5}{12}$; Γ) $\pm 1\frac{1}{12}$.
- 4. Найти $\sqrt[4]{\alpha^{24}}$, если *a* ≥ 0.

a)
$$a^{20}$$
; 6) a^{6} ; B) $\pm a^{20}$; Γ) $\pm a^{6}$.

5. Упростить
$$\sqrt[6]{\sqrt{\alpha}}$$
, если $a \ge 0$.

а) $\frac{\alpha}{12}$ б) $\sqrt[3]{\alpha}$; в) - $\sqrt[3]{\alpha}$; г) $\sqrt[12]{\alpha}$.

- 6. Вынести множитель из-под знака корня: $\sqrt[3]{54}$ а) $2\sqrt[3]{3}$; б) $3\sqrt[3]{2}$; в) 18; г) $5\sqrt[3]{4}$
- 7. Извлечь корень: $\sqrt{\left(2-\sqrt{5}\right)^2}$. $a)\sqrt{5}-2;$ $6)2-\sqrt{5};$ b) $1-\sqrt{5};$ $\Gamma)$ $1-\sqrt[4]{5}.$
- 8. Найти значение выражения $5^0 + \left(-1\frac{1}{2}\right)^3$. а) $3\frac{7}{8}$; б) $-\frac{1}{8}$; в) $-2\frac{3}{8}$; г) - $3\frac{3}{8}$.
- 9. Найти значение выражения $\left(\frac{1}{4}\right)^{-2} + (-3)^2$.
 - a) $-9\frac{1}{16}$; 6) $8\frac{15}{16}$; B) -25; Γ) 25.
- 10. Представить выражение $\sqrt[4]{\alpha^5}$, где $a \ge 0$, в виде степени.

a) $(0.35)^{\pi} < (0.35)^{3}$; b) $(0.35)^{\pi} = (0.35)^{3}$; B) $(0.35)^{\pi} > (0.35)^{3}$					
14. Упростить выражение $\frac{a-b}{a^{\frac{1}{2}}-b^{\frac{1}{2}}}$					
14. Упростить выражение $\frac{a-b}{a^{\frac{1}{2}}-b^{\frac{1}{2}}}$ a) $a^{\frac{1}{2}}+b^{\frac{1}{2}}$; б) $a^{\frac{1}{2}}-b^{\frac{1}{2}}$; в) $a+b$; г) $a-b$.					
15. Решить уравнение $\sqrt{2x^2 - 3} = x$.					
a) $x = -3$; Б) $x_1 = -3$, $x_2 = 3$; в) $x = \sqrt{3}$; Г) нет корней.					
16. Решить уравнение $2^x = -4$. <i>a)</i> $x = -2$; <i>б)</i> $x = -0.5$; <i>в)</i> $x = 2$; <i>г)</i> нет корней.					
17. Решить неравенство $\left(\frac{1}{5}\right)^x > 25$.					
a) $x < -2$; 6) $x > -2$; 6) $x < 2$; 2) $x = 2$.					
18. Указать уравнение, корнем которого является логарифм числа 5 по основанию 3.					
a) $5^x = 3$; 6) $x^5 = 3$; B) $3^x = 5$; Γ) $x^3 = 5$.					
19. Найти log _{0,5} 8.					
a) 3; 6) -3; B) 4; Γ) -4.					
20. Вычислить 4 ^{1+ log₄ 3} .					
a) 7; б) 8; в) 12; г) 256.					
21. Упростить разность log ₆ 72-log ₆ 2.					
a) $\log_6 70$; 6) $\frac{\log_6 72}{\log_6 2}$ B) 2; Γ) 6.					
22. Найти $\lg a^3$, если $\lg a = m$.					
a) $\frac{m}{3}$; 6) 3 + m; B) 3 m ; Γ) m^3 .					
23. Выразить $\log_5 e$ через натуральный логарифм.					
a) $\frac{1}{\ln 5}$; δ) $\frac{1}{\lg 5}$; Γ) $\ln 5$.					
24. Решить уравнение $log_5x = -2$.					
а) $x = -2$; б) $x = 0, 1$; в) $x = 0,04$; г) нет корней.					
25. Решить неравенство $log_{0,3}x>1$.					
a) $x > 1$; 6) $x > 0.3$; B) $x < 0.3$; r) $0 < x < 0.3$.					
26. Найти радианную меру угла 240°.					
a) $\frac{7}{5}\pi$; 6) $\frac{2}{3}\pi$; b) $\frac{4}{3}\pi$; Γ) $\frac{3}{2}\pi$.					
27. Найти значение выражения $\sin\left(-\frac{\pi}{4}\right) + \cos\left(-\frac{\pi}{6}\right)$					

a) $\alpha^{\frac{4}{5}}$; 6) $\alpha^{\frac{5}{4}}$; B) a^{9} ; Γ) a^{20} .

11. Выполнить деление: $4^{\frac{5}{3}}:4^{\frac{5}{6}}$.

12. Возвести в степень: $\left(\frac{2}{\alpha^6}\right)^3$.

a) 1; 6) 2; b) 4^2 ; Γ) $\mathbf{4}^{\frac{5}{6}}$.

13. Сравнить числа $(0,35)^{\pi}$ и $(0,35)^{3}$.

a) $\frac{6}{\alpha^{18}}$; 6) $\frac{8}{\alpha^{18}}$; B) $\frac{8}{\alpha^9}$; Γ) $\frac{6}{\alpha^9}$.

a)
$$\frac{\sqrt{2}-\sqrt{3}}{2}$$
; 6) $\frac{-\sqrt{2}+\sqrt{3}}{2}$; ; B $\frac{-\sqrt{2}+1}{2}$;; Γ) $\frac{-\sqrt{2}-1}{2}$;

28. Найти sin a, если $\cos a = \frac{5}{13}$ b $\frac{3}{2}\pi < \alpha < 2\pi$

a)
$$\frac{8}{13}$$
; 6) $-\frac{8}{13}$; B) $\frac{12}{13}$; Γ) $-\frac{12}{13}$.

B)
$$\frac{12}{13}$$
; Γ) - $\frac{12}{13}$

29. Найти tga, если ctga = 0.4

a)
$$\frac{5}{2}$$
; 6) $\frac{3}{5}$; B) $-\frac{5}{2}$; Γ) $-\frac{3}{5}$

30. Найти sin2a, если sin $a = \frac{4}{5}$, cos $a = -\frac{3}{5}$

a)
$$-\frac{24}{25}$$
; 6) $-\frac{12}{25}$; b) $\frac{1}{5}$; Γ) $-\frac{7}{25}$.

B)
$$\frac{1}{5}$$
; Γ) - $\frac{7}{25}$.

31. Найти cos 2a, если sin a = $-\frac{4}{5}$, cosa = $-\frac{3}{5}$

a)1;
$$6) - \frac{7}{25}$$

$$6) - \frac{7}{25};$$
 $B) \frac{24}{25};$ $\Gamma) \frac{7}{25}.$

32. Записать соз 580° с помощью наименьшего положительного угла.

в)
$$-\cos 40^{\circ}$$
; г) $\cos 40^{\circ}$.

33. Упростить выражение $\cos\left(\frac{\pi}{2} + \alpha\right) \cdot \sin(\pi - \alpha) + tg\left(\frac{3}{2}\pi - \alpha\right)$

a) $\cos a \sin a - \tan a$; 6) $\cos^2 a + \tan a$; B) $\cos^2 a - \cot a$; r) $-\sin^2 a + \cot a$

34. Указать выражение, которое не имеет смысла.

a)
$$\arccos \frac{\pi}{4}$$
; 6) $\arcsin 1$; B) $\arctan 15$; Γ) $\arccos \sqrt{3}/2$

35. Решить уравнение $\cos x = -1$ (в ответах $k \in \mathbb{Z}$)

a)
$$x = \pi + \pi k$$
; 6) $x = \pi + 2\pi k$; B) $x = \frac{\pi}{2} + 2\pi k$; F) $x = -\frac{\pi}{2} + 2\pi k$

36. Решить уравнение $\sin x = 0$ (в ответах $k \in \mathbb{Z}$)

a)
$$x = \frac{\pi}{2} + \pi k$$
; б) $x = \frac{\pi}{2} + 2\pi k$; в) $x = \pi k$; г) $x = 2\pi k$

37. Найти $\arcsin\left(-\frac{1}{2}\right)$

a)
$$\frac{2}{3}\pi$$
; б) $\frac{5}{6}\pi$; в) - $\frac{\pi}{3}$; Γ) - $\frac{\pi}{6}$.

38. Найти $arccos\left(-\frac{\sqrt{3}}{2}\right)$

a)
$$\frac{5}{6}\pi$$
; 6) $\frac{2}{3}\pi$; B) $-\frac{\pi}{3}$; Γ) $-\frac{\pi}{6}$

39. Найти производную функции $x^{\frac{1}{5}}$, где x > 0

a)
$$-\frac{4}{5}x^{\frac{1}{5}}$$
; 6) $5x^{-\frac{4}{5}}$; b) $\frac{1}{5}x^{-\frac{4}{5}}$; Γ) $\frac{1}{5}x^{5}$.

6)
$$5x^{-\frac{4}{5}}$$
;

B)
$$\frac{1}{5} x^{-\frac{4}{5}}$$
;

$$\Gamma \frac{1}{5} x^5$$
.

40. Найти производную функции 3cosx + 5

a)
$$3\sin x$$
; б) $-3\sin x$; в) $2\cos x + 4$; г) $-3\sin x + 5$

41. Найти производную функции х log_2x

a)
$$1 + \frac{1}{x \ln 2}$$
; $6) \frac{x}{\ln 2}$; B) $x + \frac{1}{\ln 2}$; Γ) $x + \frac{1}{x}$.

42. Найти точку (точки) экстремума функции $y = 2x^3 - 3x^2$.

a)
$$\frac{3}{2}$$
; 6) $x_1 = 0$, $x_2 = \frac{3}{2}$; B) $x_{1=0}$, $x_2 = 1$; $x_1 = 0$, $x_2 = 1$; $x_1 = 0$, $x_2 = 1$

43. Найти промежуток убывания функции $y = -x^2 + 4x - 3$.

a)
$$[2; +\infty)$$
; б) $(-\infty; 2]$; в) $[1; +\infty)$; г) $(-\infty; 1]$

44. Найти все первообразные функции $y = x^6$.

a) $6x^5 + C$; $6(x^7 + C)$; $8(x^6 + C)$; $(x^7 + C)$

45. Найти первообразную функции $f(x) = \sin x$, если $F\left(\frac{\pi}{3}\right) = \frac{1}{2}$.